Microcytic Anemia

Matthew Richardson, MD*

Author Disclosure
Dr Richardson did not disclose any financial relationships relevant to this article.

Objectives
After completing this article, readers should be able to:

1. Discuss the common causes of microcytic anemia in children.
2. Define the most common cause of microcytic anemia in children.
3. Distinguish iron deficiency anemia from beta thalassemia trait.
4. Recognize when disorders of beta-globin may present in infants.

Microcytic Anemia
Anemia is the most common hematologic abnormality that pediatricians encounter. The differential diagnosis for anemia in children includes congenital, acquired, benign, malignant, common, and extraordinarily rare disorders. Thankfully, most conditions cause consistent changes in the mean cell volume (MCV) of red blood cells (RBCs) and can be grouped by using this parameter. In children, anemia is caused most often by disorders that result in smaller-than-normal RBCs (microcytosis) (Table 1). With a thorough history, a good physical examination, and perhaps some additional blood work, the correct cause of a child’s microcytic anemia can be discovered.

Is It Anemia? Is It Microcytic?
Automated blood counters may not take into account the normal variations in hemoglobin/hematocrit and MCV that are seen throughout childhood. Results reported as abnormal must be compared with age-specific values (Table 2). Values that are 2 standard deviations below the age-appropriate mean can be considered abnormal.

Hemoglobin Overview
Because disorders of heme metabolism or globin synthesis can lead to microcytic anemia, an appreciation of hemoglobin structure and how it changes over the first few months after birth is important. Hemoglobin is produced by a multistep process involving several enzymes in mitochondria and the cytosol. Hemoglobin consists of an iron-containing heme ring associated with four globin chains (Fig. 1). Except for the first few weeks after conception, the dominant hemoglobin in utero is fetal hemoglobin (HbF), composed of the heme ring associated with two alpha-globin chains and two gamma-globin chains. As pregnancy continues, the fetus transitions to an adult hemoglobin pattern, gradually decreasing the amount of HbF and increasing the amounts of hemoglobin A (HbA) (heme ring with two alpha-chains and two beta-chains \([\alpha_2\beta_2]\)) and A2 (HbA2) (heme ring with two alpha-chains and two delta-chains) (Fig. 1). At birth, HbF accounts for approximately 80% of hemoglobin and HbA for 20%. Between 6 and 10 months after birth, most children have a distribution of hemoglobin types similar to that of adults. Thus, disorders of beta-globin genes, such as beta thalassemia or sickle cell disease, may not become apparent until partway through the first postnatal year.

History and Physical Examination
Key aspects of the history and physical examination always should be addressed when evaluating a child who has microcytic anemia.

*Section of Pediatric Hematology/Oncology, Baystate Children’s Hospital, Springfield, Mass.
Signs, Symptoms, History
Many children who have microcytic anemia have no complaints. The disorder frequently is detected as part of an office screening program or when a blood count is obtained for another illness. When evaluating a child who has microcytic anemia, the results of the newborn screen for hemoglobin disorders should be reviewed. Gestational age at time of birth should be determined because infants born preterm are at higher risk for iron deficiency than are term infants. Older children may become noticeably tired. Significant iron deficiency can cause irritability. Family members, often those who see the child only intermittently, sometimes note pallor. Pallor can be appreciated in the conjunctiva, gums, and creases of the palms; in darker-pigmented patients, looking for pallor in the nailbeds is particularly helpful.

The physical examination may show tachycardia at rest and a flow murmur. The presence of splenomegaly should raise the question of a hemoglobinopathy or thalassemia. Bony deformations such as frontal bossing or maxillary dysplasia suggest bone marrow hypertrophy, as seen in the major thalassemia syndromes.

Diet
Because nutritional iron deficiency is the primary cause of microcytic anemia in children, a dietary history is essential. Particular attention should be given to the volume of cow milk consumed and the amount and type of meats and vegetables eaten. Pica may be either a sign or a cause of iron deficiency or lead poisoning. Craving and eating ice (pagophagia) is relatively common with iron deficiency.

Blood Loss
Potential signs of blood loss (and, thus, iron loss), such as hematochezia (bright red blood per rectum), melena, and heavy menses, should be investigated.

Family History
Some causes of microcytic anemia are inherited. Physicians should ask about a diagnosis of anemia in other family members. Because certain disorders are more common in particular ethnic or racial groups, it is appro-

Table 1. Causes of Microcytic Anemia

<table>
<thead>
<tr>
<th>Common</th>
<th>Less Common</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Iron deficiency</td>
<td>- Hemoglobinopathy (with or without thalassemia)</td>
</tr>
<tr>
<td>- Thalassemia trait (alpha or beta)</td>
<td>- Inflammation</td>
</tr>
<tr>
<td></td>
<td>- Thalassemia major</td>
</tr>
<tr>
<td></td>
<td>- Lead toxicity</td>
</tr>
<tr>
<td></td>
<td>- Sideroblastic anemia</td>
</tr>
</tbody>
</table>

Table 2. Hemoglobin and Mean Cell Volume Throughout Childhood*

<table>
<thead>
<tr>
<th>Age</th>
<th>Mean Hemoglobin (g/dL) (g/L)</th>
<th>“−2SD”</th>
<th>Mean Hematocrit (%) (Proportion of 1.0)</th>
<th>“−2SD”</th>
<th>Mean Cell Volume (mcm³)</th>
<th>“−2SD”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birth</td>
<td>16.5 (165)</td>
<td>13.5 (135)</td>
<td>51 (0.51)</td>
<td>42 (0.42)</td>
<td>108</td>
<td>98</td>
</tr>
<tr>
<td>1 to 3 d</td>
<td>18.5 (185)</td>
<td>14.5 (145)</td>
<td>56 (0.56)</td>
<td>45 (0.45)</td>
<td>108</td>
<td>98</td>
</tr>
<tr>
<td>1 mo</td>
<td>14.0 (140)</td>
<td>10.0 (100)</td>
<td>43 (0.43)</td>
<td>31 (0.31)</td>
<td>104</td>
<td>85</td>
</tr>
<tr>
<td>2 mo</td>
<td>11.5 (115)</td>
<td>9.0 (90)</td>
<td>35 (0.35)</td>
<td>28 (0.28)</td>
<td>96</td>
<td>77</td>
</tr>
<tr>
<td>3 to 6 mo</td>
<td>11.5 (115)</td>
<td>9.5 (95)</td>
<td>35 (0.35)</td>
<td>29 (0.29)</td>
<td>91</td>
<td>74</td>
</tr>
<tr>
<td>6 mo to 2 y</td>
<td>12.0 (120)</td>
<td>10.5 (105)</td>
<td>36 (0.36)</td>
<td>33 (0.33)</td>
<td>78</td>
<td>70</td>
</tr>
<tr>
<td>2 to 6 y</td>
<td>12.5 (125)</td>
<td>11.5 (115)</td>
<td>37 (0.37)</td>
<td>34 (0.34)</td>
<td>81</td>
<td>75</td>
</tr>
<tr>
<td>6 to 12 y</td>
<td>13.5 (135)</td>
<td>11.5 (115)</td>
<td>40 (0.40)</td>
<td>35 (0.35)</td>
<td>86</td>
<td>77</td>
</tr>
<tr>
<td>12 to 18 y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>14.0 (140)</td>
<td>12.0 (120)</td>
<td>41 (0.41)</td>
<td>36 (0.36)</td>
<td>90</td>
<td>78</td>
</tr>
<tr>
<td>Male</td>
<td>14.5 (145)</td>
<td>13.0 (130)</td>
<td>43 (0.43)</td>
<td>37 (0.37)</td>
<td>88</td>
<td>78</td>
</tr>
<tr>
<td>18 to 49 y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>14.0 (140)</td>
<td>12.0 (120)</td>
<td>41 (0.41)</td>
<td>36 (0.36)</td>
<td>90</td>
<td>80</td>
</tr>
<tr>
<td>Male</td>
<td>15.5 (155)</td>
<td>13.5 (135)</td>
<td>47 (0.47)</td>
<td>41 (0.41)</td>
<td>90</td>
<td>80</td>
</tr>
</tbody>
</table>

appropriate to ask about the patient’s ancestry. Most families are not offended if the physician explains the logic for asking about racial or national background. Sickle hemoglobinopathies are more prevalent in African-Americans and Hispanics; hemoglobin E disorder is seen most often in Southeast Asians. The thalassemias are most common in African-Americans and people whose ancestry is from the Mediterranean region or southeast Asia. A negative report of lineage from these regions/ethnicities/races, however, does not rule out any given disorder.

Iron Deficiency
Iron is necessary for the production of hemoglobin, myoglobin, and cytochrome enzymes, which are present in all tissues. Iron deficiency, thus, affects all organ systems. Low concentrations of iron, even without anemia, have been associated with poor cognitive achievement, poor school performance, and behavioral problems. Dietary iron is absorbed in the duodenum, but not all sources of iron are absorbed equally well. Heme iron, found in meats and shellfish, is absorbed more readily than is the nonheme iron of beans, grains, and vegetables. Although the concentration of iron in human milk is similar to that of formula, human milk iron is absorbed more readily than formula iron. The presence of acidic food enhances the absorption of dietary iron.

Children become iron deficient from either inadequate dietary intake (the most common cause) or from blood loss, usually gastrointestinal (GI) or, in older females, menstrual bleeding. Infants and children who consume large amounts of cow milk are particularly prone to iron deficiency. Cow milk iron is poorly absorbed and filling and slows gastric emptying, thus preventing the consumption of heme-containing foods; calcium inhibits iron absorption; and cow milk may cause a protein allergy with GI bleeding (microscopic or gross). Ideally, children should be limited to fewer than 16 oz of cow milk each day. The finding of iron deficiency in a patient who has a normal dietary history should prompt an evaluation for a source of bleeding, such as occult or overt GI bleeding or menorrhagia.

Laboratory Findings
In addition to microcytosis, iron deficiency results in an increase in the red cell distribution width and decreases in the reticulocyte count, RBC number, and mean cellular hemoglobin. Platelet number may be elevated. For patients who have a history consistent with poor iron intake or blood loss and RBC indices consistent with iron deficiency, no additional laboratory work may be needed. Treatment of the underlying cause of the deficiency can begin, and oral iron replacement can be initiated. An increase in hemoglobin, reticulocyte count, and MCV within 1 to 4 weeks of starting iron therapy is the best test to confirm the diagnosis of iron deficiency.

If the clinical history or laboratory findings are inconclusive or conflicting, more specific measurements of iron status may be warranted. Concentrations of serum ferritin, an indirect measurement of body iron stores, are decreased in iron deficiency. However, as an inflammatory marker, ferritin values can be elevated during acute or chronic illness. Total iron-binding capacity (TIBC) may be elevated, and the transferrin saturation × 100 (serum iron/TIBC) is low. Concentrations of free erythrocyte protoporphyrin (FEP), a heme precursor, may be elevated, reflecting the body’s inability to complete heme production without iron. FEP also may be elevated with lead toxicity.

In the presence of a microcytic anemia, a Mentzer index (MCV/RBC) score above 13 is consistent with iron deficiency, and a value below 13 is consistent with beta thalassemia trait. The index, however, should be used only as a “screen.”

Figure 1. Schematic of hemoglobin structure.
Treatment
Iron deficiency and its underlying cause should be addressed concurrently by decreasing the consumption of cow milk, increasing the amount of heme-rich foods in the diet, or stopping bleeding. For parents who have difficulty limiting their child’s milk consumption, it is helpful to point out that humans are the only animals to drink routinely the milk of another species.

Assuming a normal functioning gut, iron should be replaced orally. Intramuscular or intravenous replacement of iron is inappropriate for routine nutritional iron deficiency. The usual dose for oral replacement is 6 mg/kg per day of elemental iron. The dose may be divided either three times (tid) or twice (bid) daily, depending on patient preference or on the development of adverse effects such as nausea, stomach cramping, constipation, or diarrhea. Vitamin C (ascorbic acid) increases the absorption of iron, and supplements ideally are taken with vitamin C-containing foods or juices.

There does not appear to be any discernible difference in the tolerability of different iron formulations. Ferrous sulfate is the least expensive. Patients should return after 1 to 2 weeks of therapy to have an increase in hemoglobin concentration and reticulocyte count documented; these findings assess compliance with the therapy and can validate the diagnosis. Children who have severe iron deficiency anemia (eg, hemoglobin < 5 to 6 g/dL [50 to 50 g/L]) should return earlier to assure that the anemia is not worsening. Iron replacement should continue for at least 2 months after the anemia has been corrected, assuming that the underlying cause has been addressed.

Some children who are breastfed exclusively may benefit from supplemental iron, especially if they were born preterm, have not started taking iron-fortified cereals, or have been shown by laboratory tests to have low iron stores.

The most common causes of treatment failure are noncompliance and failure to treat the cause of the iron deficiency. Disorders of malabsorption, such as celiac sprue, are rarely the cause for lack of response. Thalassemia trait, frequently mistaken for iron deficiency, must be considered if there is no response to iron therapy.

Thalassemias
The thalassemias are a family of disorders that result from decreased globin chain production. Either alpha-globin (alpha thalassemias) or beta-globin (beta thalassemias) production may be decreased. The abnormalities result in quantitative changes in globins, as opposed to hemoglobinopathies, in which globin defects are qualitative or functional.

Beta Thalassemias
Two genes control beta-globin production, one on each chromosome 11. Depending on the particular mutation, beta-globin production can range from nearly normal to entirely absent.

A one-gene defect results in beta thalassemia trait. This disorder is seen most commonly in African-Americans and people of Mediterranean descent. Children who have beta thalassemia trait are asymptomatic and have no physical findings.

If both beta-globin genes are completely nonfunctional, beta thalassemia major (Cooley anemia) results. No beta-globin is available as the infant transitions from the fetal to adult hemoglobin pattern. Thus, children who have beta thalassemia major present when HbA (alpha2beta2) is expected to be the dominant hemoglobin, sometime during the second half of the first postnatal year. Physical findings may include hepatosplenomegaly, poor growth, and in untreated cases, frontal bossing and maxillary hyperplasia resulting from deformation of cortical bone due to bone marrow erythroid hyperplasia.

In beta thalassemia intermedia, there is some degree of beta-globin gene activity between the two genes. The amount of beta-globin produced may be so minimal as to present a clinical picture identical to that of beta thalassemia major or it may be sufficient for transfusions to be avoided. Much depends on how well a patient who has beta thalassemia intermedia tolerates anemia and the physician’s threshold for performing transfusions.

LABORATORY FINDINGS. Children who have beta thalassemia trait have a microcytic anemia. However, as opposed to iron deficiency, the concentrations of ferritin,
serum iron, TIBC, and FEP are normal. The Mentzer index (MCV/RBC) is usually less than 13. Hemoglobin electrophoresis shows essentially normal amounts of HbA and increased amounts of HbA2 and HbF. Because beta thalassemia trait and iron deficiency are the most common microcytic anemias encountered in children, it is important to distinguish between them (Table 3).

The blood count in beta thalassemia major shows a severe microcytic anemia. Electrophoresis findings are remarkable for the absence of HbA and increased HbA2 and HbF. Review of a newborn screen reveals the presence of only HbF. Beta thalassemia intermedia shows varying (but low) amounts of HbA on electrophoresis, depending on its severity. The iron status of children who have thalassemia can range from iron deficient (patients who have both iron deficiency and thalassemia) to normal. In cases of beta thalassemia major, if transfusion therapy has been initiated, patients may show excess iron (elevated ferritin and transferrin saturation).

TREATMENT. Children who have beta thalassemia trait require no treatment. Parents of children who have beta thalassemia trait should consider being tested for the disorder themselves. If both are carriers of a one-gene mutation (ie, both have beta thalassemia trait), there is a 25% chance of them having a child afflicted with a major beta thalassemia syndrome. After conception, chorionic villous sampling or amniocentesis allows prenatal diagnosis.

Patients who have beta thalassemia major require chronic RBC transfusions and suffer from the associated complications of iron overload, exposure to multiple RBC antigens, and potential exposure to blood-borne pathogens. Bone marrow transplant from a matched donor is curative.

Depending on the severity of the mutations in the beta-globin genes, children who have beta thalassemia intermedia may require infrequent transfusion support or may have a clinical course indistinguishable from that of beta thalassemia major.

Alpha Thalassemia
Four identical genes are responsible for the production of alpha-globin, two on each copy of chromosome 16. Mutations in these genes often result in stop codons, thus knocking out a gene’s alpha-globin production entirely (ie, the gene is either normal and “on” or abnormal and “off”).

All four alpha-globin genes function in the normal state (Fig. 2). A one-gene defect results in “alpha thalassemia silent carrier” status, which is asymptomatic. Two gene defects lead to “alpha thalassemia trait.” The trait may be the result of one gene deleted on both chromosomes (“trans” deletions, more common in African-Americans) or two genes deleted on the same chromosome (“cis” deletions, more common in Asians). Affected children have microcytosis but often only mild (or no) anemia. This disorder should be suspected when there is microcytosis but no evidence of iron deficiency or beta thalassemia trait. Newborn screening programs may detect Bart hemoglobin (HbB) (heme associated with four gamma chains). Three gene deletions lead to hemoglobin H (HbH) disease. HbH is composed of heme associated with four beta chains, due to the paucity of alpha chains. This defect results in microcytic anemia,

<table>
<thead>
<tr>
<th>Table 3. Differences Among Microcytic Anemias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Table 3. Differences Among Microcytic Anemias

<table>
<thead>
<tr>
<th></th>
<th>Iron Deficiency</th>
<th>Beta Thalassemia Trait</th>
<th>Chronic Inflammation</th>
<th>Lead Toxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCV</td>
<td>Low</td>
<td>Low</td>
<td>Normal-low</td>
<td>Normal-low</td>
</tr>
<tr>
<td>RDW</td>
<td>High</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal-high</td>
</tr>
<tr>
<td>RBC number</td>
<td>Low</td>
<td>Normal-high</td>
<td>Normal-high</td>
<td>Low</td>
</tr>
<tr>
<td>Mentzer index (MCV/RBC)</td>
<td>> 13</td>
<td>< 13</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Platelet count</td>
<td>Normal-high</td>
<td>Normal</td>
<td>Normal-high</td>
<td>Normal-low</td>
</tr>
<tr>
<td>Ferritin</td>
<td>Low</td>
<td>Normal</td>
<td>Normal-high</td>
<td>Normal-low</td>
</tr>
<tr>
<td>Transferrin saturation (serum iron/TIBC) x 100</td>
<td>Low</td>
<td>Normal</td>
<td>Normal-low</td>
<td>Normal-low</td>
</tr>
<tr>
<td>Hemoglobin electrophoresis</td>
<td>Normal</td>
<td>Increased HbA2; +/- increased HbF</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Response to iron</td>
<td>Improves</td>
<td>No change</td>
<td>No change</td>
<td>No change</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td>Elevated ESR or CRP</td>
<td>Elevated lead concentration</td>
</tr>
</tbody>
</table>

MCV= mean cell volume, RDW= red cell distribution width, RBC= red blood cell, TIBC= total iron-binding capacity, ESR= erythrocyte sedimentation rate, CRP= C-reactive protein, HbA2= hemoglobin A2, HbF= fetal hemoglobin.
chronic hemolysis, and splenomegaly. HbB is detected on a newborn screen. Finally, when all four alpha genes are defective, no normal hemoglobin can be made, even in utero. Hydrops fetalis (severe anemia with high-output cardiac failure and anasarca) results and almost always is fatal.

LABORATORY FINDINGS. Alpha thalassemia silent carrier state is associated with no abnormalities on a blood count. Alpha thalassemia trait is diagnosed most commonly when evaluation of a microcytic anemia shows no evidence of iron deficiency or of beta thalassemia trait. The hemoglobin electrophoresis pattern in patients having alpha thalassemia trait is normal. HbB, if present on a newborn screen, is helpful evidence of the disorder, but its absence does not rule out the condition.

Children who have HbH disease have significant microcytic anemia and demonstrate HbH on electrophoresis. Molecular studies of the ratio of beta chains to alpha chains are available (mean beta/alpha = 1 in unaffected individuals, mean beta/alpha = 1.3 for alpha thalassemia trait, mean beta/alpha = 2.6 for HbH disease) but usually are unnecessary to make a diagnosis or provide counseling. Similarly, molecular testing for defective or absent alpha genes can be performed but usually is reserved for when results of the blood count and hemoglobin electrophoresis are inconclusive or when more extensive genetic counseling is needed.

TREATMENT. Silent carrier status and alpha thalassemia trait require no treatment. Because patients of Asian descent who have alpha thalassemia trait tend to have two genes affected on the same chromosome, they should be counseled on the potential risk of having children with a partner of similar ethnicity because the chance of having a baby who has a four-alpha gene deletion (hydrops fetalis) is increased. Children who have HbH disease may require folate supplements, periodic transfusions, or perhaps splenectomy; these patients should be followed by a pediatric hematologist. Infants who have hydrops fetalis/Bart hemoglobinopathy may be kept alive with lifelong transfusion therapy. A bone marrow transplant is curative and is the treatment of choice.

Hemoglobinopathies With and Without Thalassemia

Hemoglobinopathies represent qualitative or functional defects of globins. Dozens of mutations in the genes for alpha- and beta-globin that lead to structural globin abnormalities have been described. Some mutations cause no significant microcytosis unless there is a concomitant defect in the amount of globin produced (ie, a thalassemia). The two primary severe hemoglobinopathy syndromes seen in the United States are homozygous SS disease and SC disease, both usually referred to as sickle cell disease. In homozygous SS disease, both beta-globin genes have a mutation that causes a substitution of valine for glutamate at amino acid position six on the beta-globin chain. In SC disease, one beta-globin chain has the S mutation and the other a C mutation (lysine substituted for glutamate at amino acid six). These two groups of patients have anemia but usually only mild microcytosis, if any. The diseases are associated with lifelong complications, including pain crises, overwhelming bacteremia, splenic sequestration of blood, gallstones, retinopathy, avascular necrosis of bones, acute chest syndrome, and stroke. SS and SC disease are suspected when a newborn screen reports the presence of HbS or HbC in the absence of HbA or there is a family history of sickle cell disease or sickle trait. When homozygous CC disease
occurs, it is associated with a mild microcytic anemia and a relatively benign clinical course.

Sickle Cell with Beta Thalassemia

In patients who have sickle-beta-thalassemia (Sbeta0), one beta-globin gene has the S mutation and the other is nonfunctioning. Sbeta0 results in more significant microcytosis than homozygous SS disease, but the two disorders are identical clinically.

If a patient has one beta-globin gene with the S mutation and the other with a normal beta-globin gene that has decreased production, that individual is diagnosed as having Sbeta0/β−/−thalassemia. The amount of normal beta-globin produced by the thalassemic gene determines disease severity. All affected patients have a microcytic anemia to some degree. If a significant amount of normal beta-globin is made, HbA (α2β2) concentrations may be greater than 25%. Although somewhat protected by the presence of HbA, patients still are at risk for complications of sickle cell disease and should be followed by a hematologist. Similarly, a beta-globin gene that has the C mutation can be coupled with a beta-globin gene that has no activity (Cbeta0) or partial activity (Cbeta+). These disorders are clinically mild but do cause microcytic anemia.

LABORATORY FINDINGS AND TREATMENT. Sickle syndromes are diagnosed and defined best with hemoglobin electrophoresis, which determines the type and amount of hemoglobin present. Severe sickle/sickle-thalassemia syndromes (SS, SC, Sbeta0, Sbeta+) are diagnosed most often by a newborn screen (Table 4). Hemoglobin electrophoresis should be repeated after 6 months of age to quantify the exact distribution of hemoglobin types and to define the patient’s genotype better. It often is helpful to obtain hemoglobin electrophoreses on both parents, when possible.

Overwhelming infection with encapsulated organisms is the major cause of morbidity and mortality in children who have severe sickle disorders. Thus, even the suggestion of a severe sickle syndrome on a newborn screen (ie, HbS or HbS and HbC in the absence of HgbA) should lead to the immediate initiation of penicillin prophylaxis (penicillin G 125 mg by mouth tid) with referral to a hematologist (Table 3). Children who have a severe sickle/sickle-thalassemia syndrome require care from practitioners who are knowledgeable about the natural history, complications (some life-threatening), and unique health supervision needs associated with these diseases.

Milder sickle syndromes (CC, Cbeta0, Cbeta+) cause microcytic anemia, but do not require prompt initiation of penicillin prophylaxis. They do, however, warrant referral to a hematologist.

Hemoglobin E

Hemoglobin E results from yet another mutation in the beta-globin gene. The condition is interesting in that the resulting globin chain has an abnormal structure (a globinopathy) and is produced in less-than-normal amounts (a thalassemia). The gene defect is most prevalent in southeast Asia, China, and the Indian subcontinent.

In the heterozygote state (Hb E-trait) (one normal beta-globin gene and one beta-globin gene with the E

Table 4. Newborn Hemoglobin Electrophoresis Results*

<table>
<thead>
<tr>
<th>Hgb Pattern</th>
<th>Possible Diagnosis</th>
<th>Start Penicillin Prophylaxis †</th>
<th>Further testing and referral</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA</td>
<td>Normal</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>FAS</td>
<td>Sickle Trait</td>
<td>No</td>
<td>Family testing and counseling</td>
</tr>
<tr>
<td>FAC</td>
<td>C Trait</td>
<td>No</td>
<td>Family testing and counseling</td>
</tr>
<tr>
<td>FC</td>
<td>HbCC disease OR Cbeta0</td>
<td>No</td>
<td>Family testing and counseling, refer to hematology</td>
</tr>
<tr>
<td>FS</td>
<td>HbSS disease OR Sbeta0</td>
<td>Yes</td>
<td>Family testing and counseling, refer to hematology</td>
</tr>
<tr>
<td>FSC</td>
<td>HbSC disease</td>
<td>Yes</td>
<td>Family testing and counseling, refer to hematology</td>
</tr>
<tr>
<td>FSA</td>
<td>HbSbeta+ thalassemia</td>
<td>Yes</td>
<td>Family testing and counseling, refer to hematology</td>
</tr>
<tr>
<td>FSV or FSD/G</td>
<td>Sickle with indeterminate hemoglobin pattern</td>
<td>Yes</td>
<td>Family testing and counseling, refer to hematology</td>
</tr>
</tbody>
</table>

*By convention, hemoglobins are reported in order of decreasing concentration (eg, “FA” denotes more HbF than HbA)
†Penicillin 125 mg twice a day, 62.5 mg twice a day for infants less than 3 kg
Adapted with permission from New England Pediatric Sickle Cell Consortium, 2002.
mutation), there is microcytosis but only mild (or no) anemia. Because the normal beta-globin is made preferentially, HbA accounts for most of the hemoglobin produced. Affected patients are asymptomatic and require no treatment.

Patients who have two E mutations (homozygous HbE) produce almost all HbE along with some HbF and have a significant microcytosis with mild-to-moderate anemia. When a child has one beta-globin gene with the E mutation and one beta-globin gene with a beta thalassemia mutation (HbE-beta thalassemia [Ebeta−]), the condition is more severe than if either were present alone. Affected patients can be clinically similar to those having beta thalassemia intermedia, with potentially significant microcytic anemia, depending on the amount of normal beta-globin that is produced.

LABORATORY FINDINGS AND TREATMENT. Hemoglobin electrophoresis distinguishes the different subtypes of HbE disease. HbE trait and HbEE require no treatment other than genetic counseling. Patients who have HbEbeta+ likely need chronic transfusion support and iron chelation therapy; they also benefit from a hematologist’s involvement.

Lead Poisoning
Lead paint and leaded gasoline for cars were phased out of production in the 1970s, 1980s, and 1990s. However, many older homes contain residual lead paint. In addition, lead from auto emissions stays in soil for years, thus providing sources for lead poisoning. Also, certain hobbies, such as collecting leaden toy figures or using ceramic glazes that contain lead, may expose children to the metal. Lead can cause a microcytic anemia through two mechanisms. First, as a divalent metal, it interferes with iron absorption and utilization in normal iron pathways such as heme production (indeed, the microcytosis seen in lead poisoning is often due to iron deficiency). Second, lead can inhibit enzymes required for heme synthesis directly. Children who have lead poisoning may have pica either as a cause or symptom of lead poisoning.

Laboratory Findings and Treatment
Blood lead levels are easily measured. The Centers for Disease Control and Prevention and the American Academy of Pediatrics have published recommendations for testing, follow-up, and treatment that are posted at http://aappolicy.aappublications.org/.

Anemia of Inflammation
Any inflammatory state, acute or chronic, can produce either normocytic or microcytic anemia, sometimes called anemia of chronic disease. Cytokines such as interleukins-1 and -6; tumor necrosis factor-alpha; and interferon-alpha, -beta, and -gamma are produced in inflammatory states, including cancer, acute or chronic infection, and autoimmune disorders (eg, inflammatory bowel disease, juvenile idiopathic arthritis, connective tissue disease). These cytokines alter iron homeostasis, promoting accumulation of iron in storage sites (macrophages in the marrow and reticuloendothelial system) and inhibiting marrow RBC proliferation and differentiation. The result can be either micro- or normocytic anemia. The cause of inflammation is usually apparent in children who have this type of anemia. When there are no clinical signs of inflammation but laboratory findings suggest anemia of inflammation, checking for serologic markers of inflammation may be helpful.

Sideroblastic Anemia
The sideroblastic anemias are a rare group of disorders, some inherited and some acquired, that result from abnormal mitochondrial metabolism. This abnormality leads to ineffective heme synthesis and erythropoiesis. Unused iron is deposited in bone marrow erythroblasts and appears as rings around the nucleus (“ringed sideroblast”). Some of the sideroblastic anemias cause microcytic anemia. A sideroblastic anemia is diagnosed best with a bone marrow biopsy and warrants consultation with a hematologist.

Summary
Microcytic anemia is the anemia encountered most commonly in pediatrics. Nutritional iron deficiency and beta thalassemia trait are the primary causes in pediatrics, and excessive cow milk consumption is a major cause of iron deficiency. The best method of diagnosing iron deficiency is to observe improvement in anemia and microcytosis with iron therapy. Beta thalassemia and sickle syndromes may not be clinically apparent until after 6 months of age. Families/patients who have thalassemia
(trait or major) should receive genetic counseling to understand their risks for having children who have severe forms of the disorder. Newborns found to have HbS or HbC on newborn screening should be started on penicillin immediately and referred to a hematologist.

Suggested Reading

PIR Quiz
Quiz also available online at www.pedsinreview.org.

1. A 14-month-old boy is brought to your office because a visiting relative noted that he appeared pale. He drinks 40 to 50 oz of cow milk daily. He looks well except for pallor. A complete blood count demonstrates a white blood cell count of 6.9×10^3/mcL (6.9×10^9/L), hemoglobin of 5.9 g/dL (59 g/L), mean cell volume of 57 fl, and platelet count of 775×10^3/mcL (775×10^9/L). The most appropriate next step is to:
 A. Give a blood transfusion.
 B. Give a single dose of intravenous iron.
 C. Initiate a trial of oral ferrous sulfate.
 D. Obtain hemoglobin electrophoresis.
 E. Obtain serum ferritin, iron, and total iron-binding capacity measurements.

2. A 12-month-old girl is found to have a hemoglobin of 9.7 g/dL (97 g/L) during a health supervision visit. Other findings on the complete blood count are mean cell volume of 63 fl, red cell distribution width (RDW) of 15.1%, and red blood cell count of 5.3×10^6/mcL 5.3×10^12/L. She is given a trial of oral iron sulfate, and after 3 weeks, the hemoglobin measures 9.6 g/dL (96 g/L). The most likely explanation for the failure of the hemoglobin to increase is:
 A. Administration of the oral iron with meals.
 B. Failure to take oral iron.
 C. Incorrect diagnosis.
 D. Malabsorption of iron.
 E. Ongoing blood loss.

3. An 18-month-old girl who was born in Cambodia and recently emigrated to the United States with her parents is brought to you because of pallor and abdominal distention. On physical examination, the girl is pale and quiet. Her spleen is palpable 8 cm below the left costal margin, and her liver is palpable 3 cm below the right costal margin. Among the laboratory findings are hemoglobin 4.1 g/dL (41 g/L), mean cell volume 58 fl, white blood cell count 19.5×10^3/mcL (19.5×10^9/L), and platelet count 795×10^3/mcL (795×10^9/L). The most likely diagnosis is:
 A. E-beta thalassemia.
 B. Hemoglobin H disease.
 C. Iron deficiency.
 D. Malaria.
 E. Sickle-beta thalassemia.

(continued on page 14)
4. A 17-year-old girl of African descent had a complete blood count obtained in an emergency department because of high fever. She was told to follow-up with your office because of the findings on the test, which included hemoglobin 10.9 g/dL (109 g/L), mean cell volume 69 fl, white blood cell count 9.5×10^3/\text{mcL} (9.5×10^9/\text{L}) with 24% polymorphonuclear neutrophils, 70% lymphocytes, 6% monocytes, RDW 14.5%, and platelets 395×10^3/\text{mcL} (395×10^9/\text{L}). Hemoglobin electrophoresis demonstrates hemoglobin A 97%, hemoglobin A\textsubscript{2} 2.8%, and hemoglobin F 0.2%. The most likely cause of the anemia is:

A. Alpha thalassemia silent carrier.
B. Alpha thalassemia trait.
C. Beta thalassemia intermedia.
D. Beta thalassemia trait.
E. Hemoglobin H disease.

5. A 4-year-old boy presents with a 4-week history of malaise and occasional low-grade fever. Results of laboratory studies include hemoglobin 9.5 g/dL (95 g/L), mean cell volume 68 fl, white blood cell count 21.5×10^3/\text{mcL} (21.5×10^9/\text{L}) with 65% polymorphonuclear neutrophils, 16% bands, 15% lymphocytes, and 4% monocytes, RDW 16.95%, and platelet count 695×10^3/\text{mcL} (695×10^9/\text{L}). Additional findings include serum iron 15 mcg/dL (2.7 mmol/L), total iron–binding capacity 210 mcg/dL (37.6 mmol/L), and serum ferritin 160 ng/mL (160 mcg/L). The most likely diagnosis is:

A. Anemia of chronic disease.
B. Hemoglobin H disease.
C. Iron deficiency.
D. Lead poisoning.
E. Thalassemia trait.